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case z1 < zo, since the most interesting case is Z2> z12 1 (the amount of
the ante).

* The results contained in this paper were obtained in the course of research conducted
for The Rand Corporation, Santa Monica, California.
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In the classical coin-tossing game we have a sequence of independent
random variables X., v = 1, 2, . .. each taking the values 1 with prob-
ability 1/2. We are interested in the signs of the partial sums S. =
n

X,. To eliminate the zeros of S, we make the following convention:

S. is "positive" if S,,> 0 or if S = 0 but S,,-, > 0; otherwise S. is "nega-
tive." The elegance of the results to be announced depends on this
convention. Let N,, denote the number of "positive" terms among Si,
..., . We shall confine ourselves to an even n, noting only that 0 <
N*+1 - N,, < 1. In the following r and m are positive integers and
P(BIA) is the conditional probability of B under the hypothesis A.

THEOREM 1.

P(N2n = 2r) = 1 (2r)(2n-2r)

THEOREM 2A.

P(N2n = 2rIS2, = 0) =
n+

THEoREm 2.

P(2&= 2rIS2,, 2m) =m (nr> -i ~ 2 i
n-m i=m -m n-

1
i(n -i + 1)~
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From these theorems it is easy to derive the following limiting forms

lim P(Nn < an) = 2 arc sin a1/2 0< a< 1 (a)
n a+ Go7

(with the corresponding density -r1(a - a2) -/2), and

lim P(N.< anIS. = Xn'/') =
nX

7V/I j _ a)X'/c (X2(a - 1) + ay)y/'12 e-v dy (b)
for 0 < a < 1 and for every fixed X such that Xn1/' is a possible value of Sn.
As X -O 0 the last integral tends to a and for X = 0 we get in the limit the
uniform distribution as suggested by Theorem 2A.
The limiting form (a) of Theorem 1 is contained in a result of Erd6s

and Kac.I An analog to Theorem 1 for continuous random variables
was proved by E. S. Andersen ;2 however, his result does not hold for
arbitrary discrete variables, and Theorem 1 is not contained in Andersen's
result.
The most surprising information is contained in Theorem 2A. To see

this, note that the distribution of Theorem 1 departs radically from the
familiar bell-shaped pattern. The limiting probability density curve
resulting from Theorem 1 is U-shaped with the mean at the minimum.
More precisely, while lim E(N215/2n) = a this is the least probable

value of N215/2n. This means that although the game is a symmetrical
one (hence "fair") it is nevertheless more likely that one party "leads"
in an overwhelmingly large proportion of the time than that each party
leads about half of the time. In Theorem 2A it is plausible that the
knowledge that S2n vanishes should reduce the probability of extreme
values of N2,. It is noteworthy that this is true to the extent of a uniform
distribution: at a moment when there is a tie all possible guesses about
the fraction of time during which one partly has been leading are equally
probable. This result contrasts not only with Theorem 1 but even more
with a result of Paul L6vy' (Corollary 2, pp. 303-304). According to Levy,
if the condition S2n = 0 is replaced by the hypothesis that at the 2nth
trial S2n vanishes for the kth time, the limiting distribution as k -X co of
Theorem 2A is again the arc sin law (a) and no longer (b).

These results should serve as a warning to statisticians who might
assume that fluctuation phenomena always follow the bell-shaped pattern
and who would easily discover secular trends. If a coin is tossed once
a second for a total of 365 days, the probability that one of the players
will lead for more than 364 days and 10 hours is about 0.05! However,
if it is known that the game concluded at a moment where neither player
had a gain or loss, then the probability of such an extended lead is less than
0.0002.
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Proof of Theorem 1. Let

P2r(2n) = P(N2n = 2r) for n > 0

PO(O) = 1, pr(O) = 0 for r> 0.

f2k= P(Sj # Ofor 1 < j < 2k; S2k= 0) for k < I; fo =0

F(t) = f2kt2 = 1 - (1 - t2)1/2.
k 0

Unless r = or r = n, there is a smallest k such that 1 < k < n and S2u = 0.
All Sj with 1 < j < 2k, are either all positive or all negative. These con-
siderations lead to the recurrence relation

p2r(2n) = f2kP2r-2k(2n - 2k) + f2kP2r(2n - 2k). (1)
k=Ok - ) 2 k O

For r = n we must add the probability that S2k> 0 for 1 < k < 2n, which
is equal to

1 E f2k = 1 (2n) 1 (2)

For r = 0 we must add the same quantity which now represents the
probability that S2k < 0 for k < 2n.

Introducing the generating function
2n

g2n(S) = p22n)s2r,
r =0

we obtain from formula (1)

=in in2k1 +s2n(2n'
g2n(S) = EE f2ks g2x-2k(S) + 2 f2kg2n-2;(s) + 2 (n)22n

(3)
We now introduce the double generating function

co

G8(t)= &g2,(S)t2l.

Then from formula (3),

G8(t) = 2{G8(t)F(st) + G8(t)F(t)} + 21(1-t)-'1/ + (1 - st)"'1'), (4)

where F(t) = 1 - (1 - t2)'/', as implied by formula (2). Solving for
G8(t) we get

(1-t)' + (1 - st)'/' 1
(1 -tt)/'1 + (1 - st)'' = 1t)1/((1 -st) 1/2
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The coefficient of s2rt2' is P2r(2n) and is that given in Theorem 1.
Proof of Theorem 2. We use the same notations as in the preceding

proof except that now

P2T(2n) = P(N2n = 2r; S2. = 2m).
The formula (1) remains valid except that for r = n we must now add

W. = P(Sk> OforO< k< n; S2n = 2m) = n n 1

by a well-known formula (see reference 4, p. 153). For r = 0, formula (1)
is valid as it stands with both sides vanishing. Using the generating
function

W(S) E W21s2n = 1 (1-

we obtain, instead of formula (4),

G8(t) = 1/2{G(t) F(st) + G8(t) F(t) I + W(st).
Hence

G3Qt) = (1-t2)'/s
+(1 - 2t2)'/' 2W(st) (1

- S2t2)/' (1
)'

G3(t) ~~2W'"+(st) t)/ t2(1 -2
(5)

For m = 0, W(s) = 1. The coefficient of s2!t2n(r < n) in the right-hand
side of formula (5) is that of S2rt2nf+2 in

-2(1 - t2)'/2(1 -S2)-1.
Thus it is the same for all r, 0 S r < n. This means that p2r(2n), and
consequently also P(N2. = 2rjS2n = 0), is the same for all r, 0 . r S n.

1
Hence it is equal to

n
. Theorem 2A is proved.

If m > 0, the same coefficient is easily seen to be

2 ( 1/2 ) I.
This is equivalent to the formula given in Theorem 2.

* This paper is connected with work under an ONR contract for research in proba-
bility theory at Cornell University.
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